Black Magic Powder: Sila Nanotechnologies Gives Lithium-Ion Batteries A Double-Digit Power Boost
by:CTECHi
2020-04-03
Sila Nanotechnologies has all the decor of a typical Bay Area start-up: open floor plan, meeting room named after the Atari game, healthy snacks in the kitchen.
Two Portuguese water dogs, ornstrom and Luming, dominate the boss\'s office.
However, by crossing the entrance and opening the door, you will not be able to find the server shelf or the football table.
Instead, you will see an industrial lab with white
Suitable for workers in a clean room. Two-
Gas lines, computers and chemical instruments are connected to the furnace.
Construction workers are taking care of a huge and mysterious cylinder.
It\'s all for perfection, and then commercialize a black powder in the glass jar in the company\'s co-founder and chief executive, 34-year-old Gene Berdichevsky.
What powder is this?
It\'s a secret, though we can tell you that there is some silicon in it, and if the substance does what it should do, it will provide a 40% boost to the energy performance of lithiumion batteries.
Berdichevsky shouted: \"I think what Intel has done for the semiconductor and personal computing industry after 90 is what we want to achieve in terms of battery technology . \".
He has believers.
Sila has raised $100 million from Samsung Venture Capital and besemai venture capital partnersQ-Tel and others.
Cooperation with Hong Kong-
Based on Amperex Technology, powder can be put into wearable devices such as mobile phones and smart watches as early as 2019.
Sila also partnered with BMW to potentially use in cars in early 2020.
There is a lot of danger.
Batteries that can hold more juice in a given space mean electric cars with better range and phones that don\'t have to feed regularly.
Research firm IDTechEx predicts that the market for car batteries alone will reach $125 billion a year in ten years.
Sila has many competitors.
There are dozens of companies that are re-designing batteries, or battery components like Sila, most of which are startups, but there are also giants like Toyota and vacuum maker Dyson.
The battery championship is finally possible by solid-
The state battery eliminates the liquid electrolyte typical of today\'s batteries.
But the threat of competition is still far away.
Sila did a less ambitious redesign of lithium
Ion batteries are being used.
In the existing battery technology, its powder will simply replace graphite.
\"Sila has a significant lead, just because they\'re going to go down --
\"In the manufacturing process,\" said Sam Jeff, general manager of Kane energy research consultancy. Most lithium-
The anode used by the ion battery is mainly made of graphite, a carbon that can be mined or synthesized.
When the battery is discharged, the lithium ion leaves the anode and moves to the cathode, generating an electronic stream to power the phone or the motor of the car.
The ion reverses when the battery is charged.
Sila\'s powder is better than graphite, because Silicon can hold more lithium ions than graphite.
Silicon is also cheaper than graphite.
But there\'s a problem.
When Silicon holds lithium ion, it expands four times as much as a bellows.
The change in volume will greatly shorten the life of the battery.
To avoid this problem, Sila built a miniature cage-
Nano-composite materials of silicondominant--
This allows the silicon to have enough room for expansion and contraction inside.
This allows the lithium ion to go in and out of the anode without destroying the battery in the process.
Berdichevsky was the son of two electrical engineers and later became a computer programmer. In 2001, he came to Stanford University as a mechanical engineer.
Engineering majors are because they all want me to do computer science, so that\'s one thing I\'m not going to do, he said.
\"At Stanford, he met with Eerik Hantsoo (currently vice president of equipment engineering at Sila), and the two of them builtperson solar-
A car from Chicago to Los AngelesPlay during the day.
Without the help of the battery Berdichevsky to design and build, the journey will be longer.
He dropped out of Stanford University in 2004 and became Tesla\'s seventh employee.
This is the time to test all kinds of lithium.
The ion battery of Tesla sports car, he noticed that the improvement of battery performance is slowing down.
The battery business needs to break through.
Berdichevsky returned to Stanford University and received a master\'s degree in engineering in 2010, focusing on materials science.
Later as an entrepreneurin-
At the residence of the Sutter mountain joint venture, he began to think about how to build a better battery company, not just a better battery company.
An effective solution may be to make a component, not the entire one.
At Mount Sutter, Berdichevsky studied many techniques, but what caught his eye was the Russian immigrant Gleb Yushin, who runs the nanotech lab at Georgia Institute of Technology.
Together with Alex Jacobs, they set up Sila nanotechnology under the sponsorship of the University of Atlanta.
Sila developed the recipe for making the anode over the next few years, testing 30,000 variations in areas such as temperature and input.
In 2014, it moved to Alameda, California.
It\'s time for production now.
Sila is building several reactors for a new product series and it hopes to be able to do 6 million amps a year-
Battery for a few hours
This is enough for 2 people.
3 million cell phone battery.
If Sila is able to fulfill its performance promise of 40%, these batteries will be packed in 14 watts-
It now contains 10 hours of energy.
But Berdichevsky admits, \"there is only a lot of engineering and execution that needs to be done.
\"The batteries of wearable devices and mobile phones will become the current market.
Sila intends to use the knowledge and income gained there to enter the better quality industry of car batteries. \"The drop-
We don\'t need to build a billion in nature.
Berdichevsky said he was referring to the ambitious expansion of Tesla and some Chinese companies.
\"In any case, we can work with people who are going to do this.
Two Portuguese water dogs, ornstrom and Luming, dominate the boss\'s office.
However, by crossing the entrance and opening the door, you will not be able to find the server shelf or the football table.
Instead, you will see an industrial lab with white
Suitable for workers in a clean room. Two-
Gas lines, computers and chemical instruments are connected to the furnace.
Construction workers are taking care of a huge and mysterious cylinder.
It\'s all for perfection, and then commercialize a black powder in the glass jar in the company\'s co-founder and chief executive, 34-year-old Gene Berdichevsky.
What powder is this?
It\'s a secret, though we can tell you that there is some silicon in it, and if the substance does what it should do, it will provide a 40% boost to the energy performance of lithiumion batteries.
Berdichevsky shouted: \"I think what Intel has done for the semiconductor and personal computing industry after 90 is what we want to achieve in terms of battery technology . \".
He has believers.
Sila has raised $100 million from Samsung Venture Capital and besemai venture capital partnersQ-Tel and others.
Cooperation with Hong Kong-
Based on Amperex Technology, powder can be put into wearable devices such as mobile phones and smart watches as early as 2019.
Sila also partnered with BMW to potentially use in cars in early 2020.
There is a lot of danger.
Batteries that can hold more juice in a given space mean electric cars with better range and phones that don\'t have to feed regularly.
Research firm IDTechEx predicts that the market for car batteries alone will reach $125 billion a year in ten years.
Sila has many competitors.
There are dozens of companies that are re-designing batteries, or battery components like Sila, most of which are startups, but there are also giants like Toyota and vacuum maker Dyson.
The battery championship is finally possible by solid-
The state battery eliminates the liquid electrolyte typical of today\'s batteries.
But the threat of competition is still far away.
Sila did a less ambitious redesign of lithium
Ion batteries are being used.
In the existing battery technology, its powder will simply replace graphite.
\"Sila has a significant lead, just because they\'re going to go down --
\"In the manufacturing process,\" said Sam Jeff, general manager of Kane energy research consultancy. Most lithium-
The anode used by the ion battery is mainly made of graphite, a carbon that can be mined or synthesized.
When the battery is discharged, the lithium ion leaves the anode and moves to the cathode, generating an electronic stream to power the phone or the motor of the car.
The ion reverses when the battery is charged.
Sila\'s powder is better than graphite, because Silicon can hold more lithium ions than graphite.
Silicon is also cheaper than graphite.
But there\'s a problem.
When Silicon holds lithium ion, it expands four times as much as a bellows.
The change in volume will greatly shorten the life of the battery.
To avoid this problem, Sila built a miniature cage-
Nano-composite materials of silicondominant--
This allows the silicon to have enough room for expansion and contraction inside.
This allows the lithium ion to go in and out of the anode without destroying the battery in the process.
Berdichevsky was the son of two electrical engineers and later became a computer programmer. In 2001, he came to Stanford University as a mechanical engineer.
Engineering majors are because they all want me to do computer science, so that\'s one thing I\'m not going to do, he said.
\"At Stanford, he met with Eerik Hantsoo (currently vice president of equipment engineering at Sila), and the two of them builtperson solar-
A car from Chicago to Los AngelesPlay during the day.
Without the help of the battery Berdichevsky to design and build, the journey will be longer.
He dropped out of Stanford University in 2004 and became Tesla\'s seventh employee.
This is the time to test all kinds of lithium.
The ion battery of Tesla sports car, he noticed that the improvement of battery performance is slowing down.
The battery business needs to break through.
Berdichevsky returned to Stanford University and received a master\'s degree in engineering in 2010, focusing on materials science.
Later as an entrepreneurin-
At the residence of the Sutter mountain joint venture, he began to think about how to build a better battery company, not just a better battery company.
An effective solution may be to make a component, not the entire one.
At Mount Sutter, Berdichevsky studied many techniques, but what caught his eye was the Russian immigrant Gleb Yushin, who runs the nanotech lab at Georgia Institute of Technology.
Together with Alex Jacobs, they set up Sila nanotechnology under the sponsorship of the University of Atlanta.
Sila developed the recipe for making the anode over the next few years, testing 30,000 variations in areas such as temperature and input.
In 2014, it moved to Alameda, California.
It\'s time for production now.
Sila is building several reactors for a new product series and it hopes to be able to do 6 million amps a year-
Battery for a few hours
This is enough for 2 people.
3 million cell phone battery.
If Sila is able to fulfill its performance promise of 40%, these batteries will be packed in 14 watts-
It now contains 10 hours of energy.
But Berdichevsky admits, \"there is only a lot of engineering and execution that needs to be done.
\"The batteries of wearable devices and mobile phones will become the current market.
Sila intends to use the knowledge and income gained there to enter the better quality industry of car batteries. \"The drop-
We don\'t need to build a billion in nature.
Berdichevsky said he was referring to the ambitious expansion of Tesla and some Chinese companies.
\"In any case, we can work with people who are going to do this.
Custom message